Continuous Selections of the Metric Projection for 1-Chebyshev Spaces

MANFRED SOMMER

Institut für Angewandte Mathematik der Universität, Erlangen-Nürnberg, 8520 Erlangen, West Germany

Communicated by G. Meinardus

Received November 24, 1977

INTRODUCTION

If G is a nonempty subset of a normed linear space E, then for each f in E we define $P(f): = \{g_0 \in G \mid ||f - g_0|| = \inf\{||f - g|| \mid g \in G\}\}$. This is the set of best approximations to f from G. P defines a set-valued mapping of E into 2^G which is called the *metric projection* to G. A continuous mapping s of E into G is called a *continuous selection* for the metric projection (or, more briefly, merely "a continuous selection") if s(f) is in P(f) for each f in E.

In this paper we examine the problem of the existence of continuous selections for *n* dimensional subspaces of C[a, b], the Banach space of real-valued continuous functions on [a, b] under the uniform norm. For a class of such spaces we give a generalization of a result of Lazar-Morris-Wulbert [3] having shown that for 1 dimensional subspaces $\langle g_0 \rangle$ of C(X), X a compact Hausdorff space, there exists a continuous selection if and only if the set of zeros of g_0 has not more than one boundary point and g_0 does not change sign on X. They have raised the problem of characterizing higher dimensional spaces.

Using new methods, Nürnberger-Sommer [5, 6] proved the existence of continuous selections for a class of finite dimensional subspaces of C[a, b]. For their proofs they used the theory of weak Chebyshev spaces [1, 2].

Starting from these considerations we give a characterization of the existence of continuous selections for those *n* dimensional subspaces *G* of C[a, b] which fulfill dim $P(f) \leq 1$ for each *f* in C[a, b]. We prove that there exists a continuous selection if and only if for each *g* in *G* having zero intervals the set of zeros has not more than one boundary point and if *G* is weak Chebyshev.

1. DEFINITIONS AND LEMMAS

In the following let G be an n dimensional subspace of C[a, b]. We distinguish the following zeros of a function f in C[a, b].

DEFINITION 1.1. A zero x_0 of f is said to be a simple zero if f changes sign at x_0 (i.e. if there exist two points $x_1 < x_0 < x_2$ in each neighborhood of x_0 such that $f(x_1) \cdot f(x_2) < 0$) or if $x_0 = a$ or $x_0 = b$. A zero x_0 on (a, b) of f is said to be a *double zero* if f does not change sign at x_0 .

We denote the set of zeros of f by Z(f) and the number of zeros of f by |Z(f)| counting multiplicities. We define $Z(P(f)) = \{x \in [a, b] | g(x) = 0$ for all $g \in P(f)\}$.

In weak Chebyshev spaces there exist some distinguished best approximations—the alternation elements. These functions are very important to proving the existence of continuous selections.

DEFINITION 1.2. G is called *weak Chebyshev* if each g in G has at most n-1 changes of sign, i.e. there do not exist points $a \leq x_0 < x_1 < \cdots < x_n \leq b$ such that $g(x_i) \cdot g(x_{i+1}) < 0$, $i = 0, \dots, n-1$.

DEFINITION 1.3. If f is in C[a, b], then g in P(f) is called *alternation* element of f if there exist n + 1 distinct points $a \le x_0 < x_1 < \cdots < x_n \le b$ such that

 $\epsilon(-1)^{i}(f-g)(x_{i}) = ||f-g||, \quad i = 0,..., n, \epsilon = \pm 1.$

The points x_0 , x_1 ,..., x_n are called *alternating extreme points*.

Jones-Karlovitz [2] have given the following characterization of weak Chebyshev subspaces.

THEOREM 1.4. G is weak Chebyshev if and only if for each f in C[a, b] there exists at least one alternation element in P(f).

We describe now a property defined by Rubinstein [7]—see also [11] which holds for subspaces of C(Q), Q compact. Here we define this property only for C[a, b].

DEFINITION 1.5. G is called k-Chebyshev if for each f in C[a, b], P(f) is at most a k-dimensional polyhedron.

Rubinstein has given the following characterization of such spaces.

THEOREM 1.6. For each f in C[a, b], P(f) is at most a k-dimensional polyhedron if and only if every k + 1 linearly independent functions $g_1, g_2, ..., g_{k+1}$ in G have at most n - k - 1 common zeros on [a, b].

We need the following lemmas.

LEMMA 1.7. (LAZAR-MORRIS-WULBERT [3]). If s is a continuous selection of C[a, b] into G and f is in C[a, b], ||f|| = 1 and 0 is in P(f), then there is a g_0 in P(f) such that

(1) for every x in bd $Z(P(f)) \cap f^{-1}(1)$ and every g in P(f) there is a neighborhood U of x for which $g_0 \ge g$ on U and

(2) for every x in bd $Z(P(f)) \cap f^{-1}(-1)$ and every g in P(f) there is a neighborhood U of x for which $g_0 \leq g$ on U.

LEMMA 1.8. (NÜRNBERGER-SOMMER [5]). Lef G be weak Chebyshev. Each g in G, $g \neq 0$, has at most n distinct zeros on [a, b] if and only if each f in C[a, b] has exactly one alternation element in P(f).

LEMMA 1.9. (SOMMER [9]). Let G be weak Chebyshev and k-Chebyshev with $k \leq n-2$. Let no g in G, $g \not\equiv 0$, have a zero interval in [a, b]. Then G is a Chebyshev space.

The next lemma follows from Theorem 4.7 of Stockenberg [10].

LEMMA 1.10. Let G be weak Chebyshev and (n-1)-Chebyshev. If a function g in G, $g \neq 0$, has at least n distinct zeros but no zero intervals, then g(a) = g(b) = 0 and g has exactly n - 2 distinct zeros on (a, b).

Now we are able to give a generalization of the in the introduction formulated result of Lazar-Morris-Wulbert for 1-Chebyshev subspaces of C[a, b]. But it was not possible for us to get a similar result for k-Chebyshev spaces with k > 1.

2. The Characterization Theorem

THEOREM 2.1. Let G be an n dimensional 1-Chebyshev subspace of C[a, b]. Let a function g be in G, $g \neq 0$, such that g has zero intervals. Then there exists a continuous selection if and only if

- (i) $|bd Z(g)| \leq 1$ for all g in G having zero intervals
- (ii) G is weak Chebyshev

Proof. (A) (1). We first show the necessity of condition (i). We assume that there exists a $g \in G$, $g \neq 0$, such that g has a zero interval and bd Z(g) has at least two points. Let $x_1, x_2 \in bd Z(g)$. We assume in addition that $x_1, x_2 \in \overline{\{x \in [a, b] \mid g(x) > 0\}}$ (the other cases will follow analogously).

Let ||g|| = 1 and $I = [y_1, y_2]$ be an interval on which g vanishes identically.

We choose *n* distinct points $y_1 < z_0 < z_1 < \cdots < z_{n-1} < y_2$. Now we construct a $f \in C[a, b]$ as follows:

(a) ||f|| = 1,

(b) $f(x_1) = 1, f(x_2) = -1, f(z_i) = (-1)^i, i = 0, ..., n - 1,$

(c) $\max\{-1 + g(x), -1\} \leq f(x) \leq \min\{1 + g(x), 1\}$ for all $x \in [a, b]$.

Then ||f - g|| = 1 and $g \in P(f)$. For if there is a $\tilde{g} \in G$ such that $||f - \tilde{g}|| < ||f - g||$, then $(-1)^i (\tilde{g} - g)(z_i) > 0$, i = 0, ..., n - 1. Then g and \tilde{g} have at least n - 1 common zeros on $[y_1, y_2]$. Since G is 1-Chebyshev, this is impossible.

Therefore $P(f) = \{\alpha g \mid \alpha_1 \leq \alpha \leq \alpha_2\}$ with $\alpha_1 \leq 0$, $\alpha_2 \geq 1$. Since there exists a continuous selection, by Lemma 1.7 there is an $\alpha_0 g \in P(f)$ such that for each $\alpha g \in P(f)$ there is a neighborhood U_1 of x_1 for which $\alpha_0 g \geq \alpha g$ on U_1 and there is a neighborhood U_2 of x_2 for which $\alpha_0 g \leq \alpha g$ on U_2 . Because of $x_1, x_2 \in \overline{\{x \in [a, b] \mid g(x) > 0\}}$ this is not possible. Therefore we have a contradiction.

(2) Now we show the necessity of condition (ii). We assume that there exist a $g \in G$, ||g|| = 1, and n + 1 points $a \leq z_0 < \cdots < z_n \leq b$ such that

 $g(z_i)g(z_{i+1}) < 0, \quad i = 0, ..., n-1.$

By (1) g has no zero interval.

Therefore g has n distinct zeros $a < x_0 < x_1 < \cdots < x_{n-1} < b$ at which g changes sign.

Applying Theorem 20 of Meinardus [4] we get a $f \in C[a, b]$, ||f|| = 1, such that $\alpha g \in P(f)$, $-\frac{1}{2} \leq \alpha \leq \frac{1}{2}$ and $x_i \in f^{-1}(1) \cup f^{-1}(-1)$ for some $i \in \{0, ..., n-1\}$. Since G is 1-Chebyshev, $P(f) = \{\alpha g \mid \alpha_1 \leq \alpha \leq \alpha_2\}$ and, therefore, $x_i \in bd Z(P(f)) \cap (f^{-1}(1) \cup f^{-1}(-1))$ for some $i \in \{0, ..., n-1\}$.

Applying Lemma 1.7 to the points x_i we get a contradiction of the hypothesis that G has a continuous selection.

(B) Sufficiency

(1) In order to prove the converse we first show that $|Z(g)| \le n-1$ for all $g \in G$ having no zero intervals. Let $n \ge 3$. The case n = 2 is trivial. Since G is 1-Chebyshev, by (i) there are at most two linearly independent functions in G having zero intervals:

 \tilde{g} such that $\tilde{g} \equiv 0$ on $[a, x_1], \tilde{g}(x) \neq 0$ for all $x \in (x_1, b],$ \tilde{g} such that $\tilde{g} \equiv 0$ on $[x_2, b], \tilde{g}(x) \neq 0$ for all $x \in [a, x_2),$ where $x_1 \leqslant x_2$.

MANFRED SOMMER

We assume without loss of generality that \tilde{g} exists. By Theorem 1.3 in [9] the space $G_1 = G |_{[a,x_1]}$ is weak Chebyshev of dimension $m \leq n-1$. Since G is 1-Chebyshev, G_1 has dimension n-1. If G_1 is not Chebyshev of dimension n-1, then by Karlin-Studden [2] there is a $g \in G_1$, $g \neq 0$ on $[a, x_1]$, such that g has n-1 distinct zeros. Then the functions g and \tilde{g} have n-1 common zeros. But this is not possible, because G is 1-Chebyshev. If the function g exists, then the space $G_2 = G_{[x_2,b]}$ is also Chebyshev of dimension n-1. If \tilde{g} does not exist, then by Lemma 1.9 the space $G_3 = G |_{[x_1,b]}$ is Chebyshev of dimension n.

Now we assume that there is a $g \in G$ having no zero intervals such that $|Z(g)| \ge n$.

If g has n distinct zeros, then by Lemma 1.10 g(a) = g(b) = 0 and g has exactly n - 2 distinct zeros on (a, b). Then for some constant c there is a function $g - c\tilde{g}$ having no zero intervals such that $g - c\tilde{g}$ has n distinct zeros on [a, b). Applying Lemma 1.10 we get a contradiction. Therefore we assume that g has at most n - 1 distinct zeros $a \leq y_1 < \cdots < y_r \leq b$, but $|Z(g)| \geq n$.

First case. We assume that \tilde{g} does not exist. Since $|Z(g)| \leq n-1$ on $[x_1, b]$, it is $y_1 \leq x_1$. If $y_1 = a$, we add to the points $y_1, ..., y_r$ the points $y_i + \epsilon$ for each double zero y_i and also the point $y_1 + \epsilon < x_1$. If $y_1 > a$, we add to the points $y_1, ..., y_r$ the points $y_i + \epsilon$ for each double zero y_i and also the point $y_1 + \epsilon < x_1$. If $y_1 > a$, we add to the point $y_1 - \epsilon$. For ϵ sufficiently small the additional points are different from $y_1, ..., y_r$ and contained in [a, b]. Furthermore, the resulting set contains at least n + 1 points. We arrange these in increasing order and denote the first n + 1 of these points by $s_0, s_1, ..., s_n$. The values $g(s_i)$ must then alternate in sign in the sense that $g(s_i) \geq 0$ for i odd and $g(s_i) \leq 0$ for i even or vice-versa. Since G_1 is Chebyshev of dimension n - 1, it is $s_{n-1} > x_1$.

Let $g_1, g_2, ..., g_n$ be a basis of G such that det $(g_i(t_j))_{i,j=1,...,n} \ge 0$ for all $a \le t_1 < t_2 < \cdots < t_n \le b$. (see Karlin-Studden [2, p. 3]).

We show: $det(g_i(\tilde{s}_j))_{i,j=1,\cdots,n} > 0$ for all sets

$$\{\tilde{s}_1, \tilde{s}_2, ..., \tilde{s}_n\} \subset \{s_0, s_1, ..., s_n\}, \qquad \tilde{s}_1 < \tilde{s}_2 < \cdots < \tilde{s}_n.$$

If there are *n* points $\tilde{s}_1 < \tilde{s}_2 < \cdots < \tilde{s}_n$ such that $\det(g_i(\tilde{s}_j))_{i,j=1,\ldots,n} = 0$, then there is a function $\bar{g} \in G$, $\bar{g} \neq 0$, having at least *n* distinct zeros $\tilde{s}_1, \ldots, \tilde{s}_n$. Since $\tilde{s}_1 \leq x_1$ and $\tilde{s}_n > x_1$, the function \bar{g} has no zero interval in [a, b]. But this is not possible as before shown. Hence $\det(g_i(\tilde{s}_j))_{i,j=1,\ldots,n} > 0$. Now applying the proof of Theorem 4.2 of Karlin–Studden [2] we can show that *g* has at least n + 1 distinct zeros. But this is a contradiction of the hypothesis that *g* has at most n - 1 distinct zeros.

Second case. We assume that \tilde{g} exists. Applying the first case to the

interval $[x_1, b]$ we conclude that $|Z(g)| \le n - 1$ on $[x_1, b]$ and, in case $x_1 = x_2$, even $|Z(g)| \le n - 2$ for all $g \in G$ having no zero intervals. Then we can conclude as in the first case and get $|Z(g)| \le n - 1$ on [a, b].

(2) Now we show that for each f in C[a, b] all best approximations to f coincide on $[a, x_1]$ or $[x_2, b]$.

Let $f \in C[a, b]$ and $g_0 \in P(f)$ be an alternation element of f and let $a \leq y_0 < y_1 < \cdots < y_n \leq b$ be n + 1 alternating extreme points of $f - g_0$. Then $0 \in P(f - g_0)$ is an alternation element of $f - g_0$. If $g_1 \in P(f)$, then it follows:

$$\epsilon(-1)^{i}(f-g_{0})(y_{i}) = ||f-g_{0}|| \ge \epsilon(-1)^{i}(f-g_{0}-(g_{1}-g_{0}))(y_{i}),$$
$$i = 0, ..., n, \epsilon = \pm 1.$$

Then $\epsilon(-1)^{i}(g_{1}-g_{0})(y_{i}) \ge 0$, i = 0,..., n, and therefore $|Z(g_{1}-g_{0})| \ge n$.

By (1) the function $g_1 - g_0$ has a zero interval and by (i) there exists an interval $I = [a, x_1]$ or $I = [x_2, b]$ such that $g_1 \equiv g_0$ on I. Since G is 1-Chebyshev, all $g \in P(f)$ coincide on I.

(3) Now we choose a selection as follows: Let $f \in C[a, b]$ and $g_0 \in P(f)$. Then $0 \in P(f - g_0) = \{\alpha g \mid \alpha_1 \leq \alpha \leq \alpha_2\}$. By 2) all $g \in P(f - g_0)$ have a zero interval. Thus $g \in \langle \tilde{g} \rangle$ or $g \in \langle \tilde{g} \rangle$.

Let without loss of generality $g \in \langle \tilde{g} \rangle$. Since \tilde{g} has no zero on $(x_1, b]$, the space $\langle \tilde{g} \rangle$ is an 1 dimensional weak Chebyshev subspace of $C[x_1, b]$. By Lemma 1.8 there exists exactly one alternation element \tilde{g} of $f - g_0$ for approximation by $\langle \tilde{g} \rangle$ on $[x_1, b]$.

We define: $s(f) := g_0 + g_1$, where

$$g_1 := \begin{cases} 0, a \leq x \leq x_1, \\ \bar{g}, x_1 \leq x \leq b. \end{cases}$$

Then it is easy to show that $g_0 + g_1 \in P(f)$ and $g_0 + g_1$ is independent of the choice of $g_0 \in P(f)$. If $g \in \langle \tilde{g} \rangle$, then we define s(f) analogously.

(4) Now we show the continuity of this selection: We assume that there exists a sequence $(f_n) \subset C[a, b]$ such that $f_n \to f$ and $s(f_n) \to \hat{g}, \hat{g} \neq s(f)$.

Let $I = [a, x_1]$ be that interval on which all best approximations of f coincide and let, for each n, I_n be that interval on which all best approximations of f_n coincide. We can assume without loss of generality that $I_n = \tilde{I}$ for all $n \in \mathbb{N}$.

First case. $\tilde{I} = [x_2, b]$. Then $f_n - s(f_n)$ has at least two alternating extreme points in $[x_1, b]$ for each *n*. Otherwise, for some constant $c_n \neq 0$,

MANFRED SOMMER

 $||f_n - s(f_n) - c_n \tilde{g}|| = ||f_n - s(f_n)||$ and therefore $c_n \tilde{g} \in P(f_n - s(f_n))$. Because of $P(f_n - s(f_n)) = \{\alpha \tilde{g} \mid \alpha_{1n} \leq \alpha \leq \alpha_{2n}\}$ we get a contradiction. Thus $f - \hat{g}$ has also at least two alternating extreme points in $[x_1, b]$. Since $\hat{g} - g_0 \in \langle \tilde{g} \rangle$, by Theorem 1.4 the function $\hat{g} - g_0$ is an alternation element of $f - g_0$ for approximation by $\langle \tilde{g} \rangle$ on $[x_1, b]$. By Lemma 1.8 there is only one alternation element and therefore $\hat{g} - g_0 = g_1$. Thus $\hat{g} = g_0 + g_1 = s(f)$.

This is a contradiction to the assumption that $\hat{g} \neq s(f)$.

Second case. $\tilde{I} = [a, x_1]$. We examine this case analogously.

Remark. If G is weak Chebyshev and 1-Chebyshev and there is no g in G, $g \neq 0$, having a zero interval, then G has always a continuous selection:

If *n* is greater than 2, then it follows from Lemma 1.9 that G is Chebyshev on [a, b] and the existence of a continuous selection is given.

If n = 2, then it follows from a result in [8] that G is Chebyshev on [a, b) and on (a, b]. Therefore, by a result in [5] there exists a continuous selection.

EXAMPLE. Let $S_{n,1}$: = $\langle 1, x, ..., x^n, (x - x_1)_n^n \rangle \in C[a, b]$ with $a < x_1 < b$. This space is the n + 2 dimensional space of spline functions of degree n with one fixed knot. It is easy to show that $S_{n,1}$ is 1-Chebyshev. Moreover $S_{n,1}$ is weak Chebyshev ([2]). By Theorem 2.1 $S_{n,1}$ has a continuous selection. This result is also proved by Nürnberger-Sommer in [6]. The selection of Theorem 2.1 is the same as the selection of the result in [6].

REFERENCES

- R. C. JONES AND L. A. KARLOVITZ, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approximation Theory 3 (1970), 138-145.
- S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems," Pure and Applied Mathematics, Vol. 15, Wiley, New York, 1966.
- 3. A. J. LAZAR, P. D. MORRIS AND D. E. WULBERT, Continuous selections for metric projections, J. Functional Analysis 3 (1969), 193-216.
- G. MEINARDUS, "Approximation of Functions: Theory and Numerical Methods," Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag, Berlin/Heidelberg/ New York, 1967.
- 5. G. NÜRNBERGER AND M. SOMMER, Weak Chebyshev subspaces and continuous selections for the metric projection, *Trans. Amer. Math. Soc.* 238 (1978), 129–138.
- G. NÜRNBERGER AND M. SOMMER, Characterization of continuous selections of the metric projection for spline functions, J. Approximation Theory 22 (1978), 320-330.
- 7. G. S. RUBINSTEIN, On a method of investigation of convex sets, *Dokl. Akad. Nauk* SSSR 102 (1955), 451-454.
- M. SOMMER AND H. STRAUSS, Eigenschaften von schwach tschebyscheffschen Räumen, J. Approximation Theory 21 (1977), 257–268.

- 9. M. SOMMER, Weak Chebyshev spaces and splines, preprint.
- 10. B. STOCKENBERG, "Zur Struktur von Čebyšev- und schwachen Čebyšev-Räumen," Inaugural-Dissertation, Duisburg, 1976.
- 11. S. J. ZUHOVICKII, On the approximation of real functions in the sense of P. L. Čebyšev, Amer. Math. Soc. Transl. (Ser. 2) 19 (1962), 221-252.