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INTRODUCTION

If G is a nonempty subset of a normed linear space E, then for each I in
E we define P(f): = {go E G IIII - go II = inf{111 - gill g E G}}. This is the
set of best approximations to/from G. P defines a set-valued mapping of E
into 2G which is called the metric projection to G. A continuous mapping s of
E into G is called a continuous selection for the metric projection (or, more
briefly, merely "a continuous selection") if s(f) is in P(f) for each I in E.

In this paper we examine the problem of the existence of continuous
selections for n dimensional subspaces of C[a, b], the Banach space of real­
valued continuous functions on [a, b] under the uniform norm. For a class
of such spaces we give a generalization of a result of Lazar-Morris-Wulbert
[3] having shown that for 1 dimensional subspaces <go> of C(X), X a compact
Hausdorff space, there exists a continuous selection if and only if the set of
zeros of go has not more than one boundary point and go does not change
sign on X. They have raised the problem of characterizing higher dimensional
spaces.

Using new methods, Niirnberger-Sommer [5,6] proved the existence of
continuous selections for a class of finite dimensional subspaces of C[a, b].
For their proofs they used the theory of weak Chebyshev spaces [1, 2].

Starting from these considerations we give a characterization of the exis­
tence of continuous selections for those n dimensional subspaces G of C[a, b]
which fulfill dim P(f) :::;; 1 for each/in C[a, b]. We prove that there exists a
continuous selection if and only if for each g in G having zero intervals the
set of zeros has not more than one boundary point and if G is weak
Chebyshev.
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In the following let G be an n dimensional subspace of C[a, b]. We dis­
tinguish the following zeros of a function / in C[a, b].

DEFIN'ITION 1.1. A zero X o of/is said to be a simple zero if/changes sign
at Xo (i.e. if there exist two points Xl < Xo < X2 in each neighborhood of Xo
such that/(xl ) '/(x2) < 0) or if Xo = a or Xo = b. A zero Xo on (a, b) of/
is said to be a double zero if/does not change sign at Xo .

We denote the set of zeros of / by Z(f) and the number of zeros of/by
I Z(f)1 counting multiplicities. We define Z(P(f)) = {x E [a, b] Ig(x) = °
for all g E P(f)}.

In weak Chebyshev spaces there exist some distinguished best approxima­
tions-the alternation elements. These functions are very important to proving
the existence of continuous selections.

DEFINITION 1.2. G is called weak Chebyshev if each g in G has at most
n - I changes ofsign, i.e. there do not exist points a :(; X o < Xl < ... < Xn :(;

b such that g(Xi) . g(Xi+1) < 0, i = 0,... , n - 1.

DEFIN'ITION' 1.3. If / is in C[a, b], then g in P(f) is called alternation
element of/if there exist n + 1 distinct points a :(; Xo < Xl < ... < Xn :(; b
such that

€(-l)i(! - g)(Xi) = II/ - gil, i = 0,... , n, € = ±l.

The points xo , Xl'"'' Xn are called alternating extreme points.

Jones-Karlovitz [2] have given the following characterization of weak
Chebyshev subspaces.

THEOREM 1.4. G is weak Chebyshev if and only if/or each / in C[a, b]
there exists at least one alternation element in P(f).

We describe now a property defined by Rubinstein [7]-see also [11]­
which holds for subspaces of CCQ), Q compact. Here we define this property
only for C[a, b].

DEFINITION 1.5. G is called k-Chebyshev if for each / in C[a, b], P(f) is
at most a k-dimensional polyhedron.

Rubinstein has given the following characterization of such spaces.

THEOREM 1.6. For each / in C[a, b], P(f) is at most a k-dimensional
polyhedron if and only if every k + 1 linearly independent functions gl , g2,""
gk+l in G have at most n - k - 1 common zeros on [a, b].
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We need the following lemmas.

LEMMA 1.7. (LAZAR-MoRRIS-WULBERT [3]). If s is a continuous selection
ofC[a, b] into G andfis in C[a, b], Ilfll = I and°is in P(f), then there is a
go in P(f) such that

(1) for every x in bd Z(P(f)) I1f-1(1) and every g in P(f) there is a
neighborhood U of x for which go >g on U and

(2) for every x in bd Z(P(f)) I1f-1(-I) and every gin P(f) there is a
neighborhood U of x for which go ~ g on U.

LEMMA 1.8. (NURNBERGER-SOMMER [5]). Lef G be weak Chebyshev.
Each g in G, g =1= 0, has at most n distinct zeros on [a, b] ifand only ifeach fin
C[a, b] has exactly one alternation element in P(f).

LEMMA 1.9. (SOMMER [9]). Let G be weak Chebyshev and k-Chebyshev
with k ~ n - 2. Let no gin G, g =1= 0, have a zero interval in [a, b]. Then G is a
Chebyshev space.

The next lemma follows from Theorem 4.7 of Stockenberg [10].

LEMMA 1.10. Let G be weak Chebyshev and (n - I)-Chebyshev. If a
function g in G, g =1= 0, has at least n distinct zeros but no zero intervals, then
g(a) = g(b) = °and g has exactly n - 2 distinct zeros on (a, b).

Now we are able to give a generalization of the in the introduction formu­
lated result of Lazar-Morris-Wulbert for I-Chebyshev subspaces of C[a, b].
But it was not possible for us to get a similar result for k-Chebyshev spaces
with k > 1.

2. THE CIlARACTERIZATION THEOREM

TIlEOREM 2.1. Let G be an n dimensional I-Chebyshev subspace ofC[a, b].
Let a function g be in G, g =1= 0, such that g has zero intervals. Then there
exists a continuous selection if and only if

(i) Ibd Z(g) I ~ I for all gin G having zero intervals

(ii) G is weak Chebyshev

Proof (A) (1). We first show the necessity of condition (i). We assume
that there exists agE G, g =1= 0, such that g has a zero interval and bd Z(g)
has at least two points. Let Xl' x2 Ebd Z(g). We assume in addition that
Xl' x2 E{x E [a, b] I g(x) > o} (the other cases will follow analogously).



CONTINUOUS SELECTIONS 49

Let II g II = I and I = [Yl ,Y2] be an interval on which g vanishes identi­
cally.

We choose n distinct points Y1 < Zo < Zl < ... < Zn-l < Y2. Now we
construct afE C[a, b] as follows:

(a) ilfll = I,

(b) f(x l ) = I,f(x2) = -I,f(zi) = (-I)i, i = 0, ..., n - I,

(c) max{-I + g(x), -I} ~f(x) ~ min{1 + g(x), I} for all XE [a, b].

Then ilf - gil = I andg E P(f). For if there is ag E G such that Ilf - gil <
Ilf - g II, then (-I)i(g - g)(Zi) > 0, i = 0,... , n - I. Then g and g have
at least n - I common zeros on [Yl, Y2]' Since G is I-Chebyshev, this is
impossible.

Therefore P(f) = {ag I al ~ a ~ a2} withal ~ 0, a2 ~ I. Since there
exists a continuous selection, by Lemma 1.7 there is an aog E P(f) such that
for each ag E P(f) there is a neighborhood Vl of Xl for which aog ~ ag on
Vl and there is a neighborhood V2of X2 for which aog ~ ag on V2 . Because of

Xl' X 2 E {X E [a, b] Ig(x) > o} this is not possible. Therefore we have a
contradiction.

(2) Now we show the necessity of condition (ii). We assume that there
exist agE G, II g II = I, and n + I points a ~ Zo < ... < Zn ~ b such that

i = 0'00" n - I.

By (I) g has no zero interval.
Therefore g has n distinct zeros a < Xo < Xl < ... < X n - l < b at which

g changes sign.
Applying Theorem 20 of Meinardus [4] we get a fE C[a, b], Ilfll = I,

such that ag E P(f), -} ~ a ~ t and Xi Ef-l(l) U f-l( -I) for some
i E {O,OO., n - I}. Since G is I-Chebyshev, P(f) = {ag I al ~ a ~ a2} and,
therefore, Xi E bd Z(P(f)) n ([-1(1) U f-l( -1)) for some i E {O'OO., n - I}.

Applying Lemma 1.7 to the points Xi we get a contradiction of the hypo­
thesis that G has a continuous selection.

(B) Sufficiency

(I) In order to prove the converse we first show that IZ(g) I ~ n - 1
for all g E G having no zero intervals. Let n ~ 3. The case n = 2 is trivial.
Since G is I-Chebyshev, by (i) there are at most two linearly independent
functions in G having zero intervals:

g such that g =° on [a, xd, g(x) oF °
g such that g == ° on [x2 , b], g(x) oF 0

for all XE (Xl' b],

for all X E [a, x2),
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We assume without loss of generality that g exists. By Theorem 1.3 in [9]
the space Gl = G Ira,x

l
] is weak Chebyshev of dimension m :(; n - 1. Since

G is I-Chebyshev, Gl has dimension n - 1. If Gl is not Chebyshev of dimen­
sion n - I, then by Karlin-Studden [2] there is agE Gl , g =1= 0 on [a, Xl]'
such that g has n - I distinct zeros. Then the functions g and g have n - I
common zeros. But this is not possible, because G is I-Chebyshev. If the
function g exists, then the space G2 = GrX

2
.b] is also Chebyshev of dimension

n - 1. If g does not exist, then by Lemma 1.9 the space Ga = G irxl,b] is
Chebyshev of dimension n.

Now we assume that there is agE G having no zero intervals such that
I Z(g)j ~ n.

If g has n distinct zeros, then by Lemma 1.10 g(a) = g(b) = 0 and g has
exactly n - 2 distinct zeros on (a, b). Then for some constant c there is a
function g - cg having no zero intervals such that g - cg has n distinct
zeros on [a, b). Applying Lemma 1.10 we get a contradiction. Therefore we
assume that g has at most n - I distinct zeros a:(; Yl < ... < Y., :(; b,
but i Z(g) I ~ n.

First case. We assume that g does not exist. Since I Z(g) [ :(; n - I on
[Xl' b], it is Yl :(; Xl . If Y1 = a, we add to the points Yl ,... , Y1 the points
Yi + E for each double zero Yi and also the point Yl + E < Xl . If Y1 > a,
we add to the points Y1 '00" Yr the points Yi + E for each double zero Yi and
also the point Y1 - E. For E sufficiently small the additional points are
different from Y1 ,... , Yr and contained in [a, b]. Furthermore, the resulting
set contains at least n + I points. We arrange these in increasing order and
denote the first n + I of these points by So , SI ,... , Sn . The values g(Si) must
then alternate in sign in the sense that g(Si) must then alternate in sign in the
sense that g(s,) ~ 0 for i odd and g(Si) :(; 0 for i even or vice-versa. Since G1

is Chebyshev of dimension n - 1, it is Sn-l > Xl .
Let gl , g2 , , gn be a basis of G such that det (g;(tj»i,j~L.. .,n ~ 0 for all

a :(; t1 < t2 < < tn :(; b. (see Karlin-Studden [2, p. 3]).
We show: det(g,(sj»i,j~Loo.,n > 0 for all sets

If there are n points Sl < S2 < ... < sn such that det(gi(Sj»i.j=I ... .,n = 0,
then there is a function go E G, go =1= 0, having at least n dis,tinct zeros SI ,... , sn .
Since SI :(; Xl and sn > Xl , the function go has no zero interval in [a, b]. But
this is not possible as before shown. Hence det(gi(sj»i,j~l .....n > O. Now
applying the proof of Theorem 4.2 of Karlin-Studden [2] we can show that g
has at least n + I distinct zeros. But this is a contradiction of the hypothesis
that g has at most n - 1 distinct zeros.

Second case. We assume that g exists. Applying the first case to the
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interval [Xl' b] we conclude that \ Z(g)I ~ n - 1 on [Xl' b] and, in case
Xl = x2 , even I Z(g) I ~ n - 2 for all g E G having no zero intervals. Then
we can conclude as in the first case and get I Z(g) I ~ n - 1 on [a, b].

(2) Now we show that for eachfin C[a, b] all best approximations tof
coincide on [a, Xl] or [x2 , b].

Let f E C[a, b] and go E P(f) be an alternation element of f and let a ~
Yo <)'1 < ... < Yn ~ b be n + I alternating extreme points of f - go .
Then °E P(f - go) is an alternation element off - go . If gl E P(f), then it
follows:

i = 0,... , n, E = ± I.

Then E( -I)i(gl - gO)(Yi) ~ 0, i = 0,... , n, and therefore I Z(gl - go) I ~ n.
By (1) the function gl - go has a zero interval and by (i) there exists an

interval I = [a, Xl] or 1= [x2 , b] such that gl == go on 1. Since G is 1­
Chebyshev, all g E P(f) coincide on 1.

(3) Now we choose a selection as follows: LetfE C[a, b] and go E P(f).
Then °E P(f - go) = {(Xg I (Xl :s; (X ~ (X2}' By 2) all g E P(f - go) have a
zero interval. Thus g E <D or g E <g).

Let without loss of generality gE <D. Since g has no zero on (Xl' b], the
space <D is an 1 dimensional weak Chebyshev subspace of C[XI' b]. By
Lemma 1.8 there exists exactly one alternation element goff - go for appro­
ximation by <D on [Xl' b].

We define: s(f): = go + gl' where

Then it is easy to show that go + gl E P(f) and go + gl is independent of the
choice of go E P(f). If g E <i), then we define s(f) analogously.

(4) Now we show the continuity of this selection: We assume that
there exists a sequence (fn) C C[a, b] such thatfn ~ fand s(fn) ~g,g # s(f).

Let I = [a, Xl] be that interval on which all best approximations of f
coincide and let, for each n, In be that interval on which all best approxima­
tions of fn coincide. We can assume without loss of generality that In = I
for all n E N.

First case. I = [x2 , b]. Then fn - s(fn) has at least two alternating
extreme points in [Xl' b] for each n. Otherwise, for some constant Cn # 0,



52 MANFRED SOMMER

1/ In - sUn) - cng II = [lin - sUn)11 and therefore cng E PUn - sUn))' Be­
cause of PUn - sUn)) = {cxg I CXln ~ CX ~ cxzn} we get a contradiction. Thus
I - g has also at least two alternating extreme points in [Xl' b]. Since
g - go E <D, by Theorem 1.4 the functiong - go is an alternation element of
f - go for approximation by <D on [Xl' b]. By Lemma 1.8 there is only one
alternation element and therefore g - go = gl' Thus g = go + gl = s(f).

This is a contradiction to the assumption thatg 7'= s(f).

Second case. J = [a, Xl]. We examine this case analogously.

Remark. ]f G is weak Chebyshev and I-Chebyshev and there is no g in G,
g =f= 0, having a zero interval, then G has always a continuous selection:

If n is greater than 2, then it follows from Lemma 1.9 that G is Chebyshev
on (a, b] and the existence of a continuous selection is given.

]f n = 2, then it follows from a result in [8] that G is Chebyshev on [a, b)
and on (a, b]. Therefore, by a result in [5] there exists a continuous
selection.

EXAMPLE. Let Sn.l: = <1, X, ... , xn , (x - XI)~> C C[a, b] with a < Xl < b.
This space is the n + 2 dimensional space of spline functions of degree n
with one fixed knot. It is easy to show that Sn.l is I-Chebyshev. Moreover
Sn.l is weak Chebyshev ((2]). By Theorem 2.1 Sn.l has a continuous selection.
This result is also proved by Niirnberger-Sommer in [6]. The selection of
Theorem 2.1 is the same as the selection of the result in [6].
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